CorWave développe des pompes cardiaques implantables innovantes basées sur une technologie de rupture : la membrane ondulante.
La membrane ondulante CorWave propose une approche inédite dans le domaine de l’assistance cardiaque pour assurer réellement un flux sanguin pulsatile.
CorWave est une société de dispositifs médicaux à forte croissance qui développe des pompes d’assistance cardiaques inédites afin d’apporter une solution fiable et durable à l’enjeu majeur de santé publique que représente l’insuffisance cardiaque. Les solutions développées par CorWave, véritablement physiologiques, assureront une meilleure vie aux patients.
Fondée en 2011 par l’incubateur MD Start et soutenue par des investisseurs de renom, CorWave a obtenu plus de 35 millions d’euros de financements et emploie plus de 50 collaborateurs.
CorWave est lauréat de nombreux prix et concours. En 2016 CorWave remporte la phase 1 du Concours Mondial d’Innovation (CMI) pour le projet NovaPulse. En 2017, ce projet remporte également la phase 2 du concours CMI. La même année, CorWave reçoit le prix Deloitte Technology Fast 50 Biotech d’avenir puis en 2018 une aide pour le programme Calypso dans le cadre du Programme d’Investissements d’Avenir (PIA) opéré par Bpifrance.
WhalePower Corporation is a Canadian company established in Toronto in 2005 to create energy efficient rotating devices for a myriad of different applications. WhalePower Corporation has patented and developed Tubercle Technology, applying it first to a small turbine and then to large scale HVLS fans.
WhalePower has since developed for clients a new kind of cooling tower fan, a diesel engine cooling fan, a new fan small enough to cool computer graphic cards which is better than the best available on the market. WhalePower currently licenses the right to use tubercles on rotating devices to others who wish to test, develop, manufacture and sell such machines. Many uses, from marine thrusters to low flow hydro generation, to pumps, compressors, and mixers, await exploitation.
BATHY BOT & BATHY REEF (VICAT, FONDATION JACQURES ROUGERIE, TANGRAM, SOLIQUID, MIO), un habitat artificiel de grande profondeur pour régénérer la biodiversité marine
XTU – GEPEA, des biofacades qui agissent comme des bioréacteurs.
OUVRIR LE DOSSIER
Merci également d’avoir invité Alain Renaudin, président-fondateur de NewCorp Conseil et de Biomim’expo à livrer son point de vue dans le très beau numéro spécial consacré « au monde d’après ».
TISSIUM™ invents the next generation of synthetic polymers for tissue reconstruction :
BIOMORPHIC : Conforms to and integrates with surrounding tissue to enable natural healing
PROGRAMMABLE : Modular polymer design can be adjusted to match tissue-specific requirements
TISSIUM was founded in 2013 to address one of the most persistent medical challenges since the inception of surgical procedures: to reconstruct damaged tissue and restore its natural function.
Since the discovery of our first polymer at the labs of Bob Langer and Jeff Karp at MIT, we recognized the exceptional potential for our technology to revolutionize the field of tissue reconstruction in multiple therapeutic areas.
Our unique approach to product development leverages the knowledge gained from the development of our technology platform comprised of proprietary polymers, activation technologies, and delivery devices.
We have developed a fully integrated innovation, design, commercialization and manufacturing platform to support our internal programs as well as co-development partnerships with leaders in the medtech industry.
L’intervention de Maria Pereira à Biomim’expo 2019 :
Sharklet is the world’s first technology to inhibit bacterial growth through pattern alone. The Sharklet surface is comprised of millions of microscopic features arranged in a distinct diamond pattern. The structure of the pattern alone inhibits bacteria from attaching, colonizing and forming biofilms. Sharklet contains no toxic additives or chemicals, and uses no antibiotics or antimicrobials.
Sharklet draws inspiration from the shape and pattern of the dermal denticles of sharkskin. Sharks are resistant to fouling organisms in the water including algae and barnacles.
Founded in 2007, Sharklet Technologies, Inc. uses the Sharklet micropattern to control bacteria and other microorganisms. Originally discovered by Dr. Tony Brennan at the University of Florida, STI has licensed the technology to develop medical devices and consumer applications utilizing the Sharklet pattern.
After relocating in 2009, we are now located in the Colorado Bioscience Park in Aurora, Colorado, in a facility that includes business development and management offices as well as a GLP-ready microbiology and cell culture lab.
Un matériau intégralement conçu à partir des écailles de poisson.
La SCALITE® – contraction de “scale” (écaille en anglais) et du suffixe “lite” (lithos, pierre en grec) – est une matière conçue à base d’écaille de poissons, un coproduit de la filière pêche abondant, renouvelable et peu valorisé.
The research flow of this chair is on the exploration and exploitation of marine compounds, materials and biomimetics to face current problematic societal issues related to human health and marine environment. Lowering the devastating impact of the emerging pollutants in the marine environment is a major challenge in the 21st century.
Oceans are an extraordinary and unexploited source of natural compounds with specific and very interesting biological, physicochemical and structural properties. Although very promising, a considerable amount of these compounds are still scarcely exploited. In this context, this chair focuses on the blue and red biotechnologies by:
establishing methodologies for the extraction of biomolecules (including biopolymers) from marine products and by-products pointing their processing as porous structures, films, hydrogels, solutions and (nano)composite materials;
looking into particular features and phenomena of marine animals and plants as inspiration for the design and development of bio-inspired and functional (bio)materials targeting cosmetic, medical and packaging applications.
Once developed, most of these materials will be used by humans or/and in contact with marine environment. Thus, the impact of these new materials and/or their metabolites on human health as well as on the aquatic media will also be addressed.
To develop this 5-year chair, we are a motivated and multidisciplinary team composed by the PI, 3 post-doctoral researchers and 4 PhD students in close collaboration with national and international academic researchers as well as industrial and institutional partners.