WASHINGTON UNIVERSITY

Wireless steerable vision for live insects and insect-scale robots

Vision serves as an essential sensory input for insects but consumes substantial energy resources. The cost to support sensitive photoreceptors has led many insects to develop high visual acuity in only small retinal regions and evolve to move their visual systems independent of their bodies through head motion.

By understanding the trade-offs made by insect vision systems in nature, we can design better vision systems for insect-scale robotics in a way that balances energy, computation, and mass. Here, we report a fully wireless, power-autonomous, mechanically steerable vision system that imitates head motion in a form factor small enough to mount on the back of a live beetle or a similarly sized terrestrial robot.

Our electronics and actuator weigh 248 milligrams and can steer the camera over 60° based on commands from a smartphone. The camera streams “first person” 160 pixels–by–120 pixels monochrome video at 1 to 5 frames per second (fps) to a Bluetooth radio from up to 120 meters away.

We mounted this vision system on two species of freely walking live beetles, demonstrating that triggering image capture using an onboard accelerometer achieves operational times of up to 6 hours with a 10–milliamp hour battery.

We also built a small, terrestrial robot (1.6 centimeters by 2 centimeters) that can move at up to 3.5 centimeters per second, support vision, and operate for 63 to 260 minutes.

Our results demonstrate that steerable vision can enable object tracking and wide-angle views for 26 to 84 times lower energy than moving the whole robot.

More : https://robotics.sciencemag.org/content/5/44/eabb0839

Scientific publication : https://www.sciencemag.org/about/science-licenses-journal-article-reuse


Contact :

Vikram Iyer

vsiyer@uw.edu
185 Stevens Way, AE100R Campus Box 352500
Paul G. Allen Center, Department of Electrical Engineering
Seattle, WA 98195-2500

About      News      Publications      CV

About Me


I am a final year PhD. student in Electrical and Computer Engineering at the University of Washington where I work in the Network and Mobile Systems Lab with Shyam Gollakota. I also work closely with Sawyer Fuller who runs the Autonomous Insect Robotics Lab. My research focuses on wireless technologies such as communication, power and localization for a variety of resource constrained platforms including low power sensors and insect scale robots. Recently I have been focused on developing bio-integrative systems such as cameras and sensors small enough to ride on the back of live insects like bumblebees and beetles. I am also a part of the Urban Innovation Initiative at Microsoft Research working on Project Eclipse, a low-cost cloud connected air quality monitoring platform for cities.

Before coming to UW I did my Bachelors in Electrical Engineering and Computer Sciences at UC Berkeley where I worked on a chip scale flow cytometer with Bernhard Boser.

I will be applying for faculty positions this year. I expect to graduate in spring 2021.

 

ELWAVE, détection sensorielle électrique

ELECTROMAGNETIC DETECTION AND NAVIGATION

ELWAVE DESIGNS, MANUFACTURES AND SELLS ELECTROMAGNETIC DETECTION, NAVIGATION AND CHARACTERISATION SYSTEMS BASED ON INNOVATIVE “ELECTRIC SENSE” TECHNOLOGY.
Simple to use, robust and adaptable for all types of vehicles and robots, ELWAVE solutions provide real-time 360° perception capability in complex underwater and industrial environments.
ELWAVE provides solutions adapted for different environments and operational constraints (congestion, depth at which used, etc.).

Bio-inspired ?

ELWAVE develops solutions based on electrical sensory perception, known as “electric sense”, developed since 2007 by the biorobotics research group in Mines-Telecom Atlantique Institute.

ELWAVE technology takes its inspiration from the sensory mode used by tropical freshwater fish (African mormyrids and South American gymnotiforms), which have developed electrical sensory perception in order to move around, capture their prey and communicate with each other in an environment where vision and sonar (acoustic communication – echolocation) are ineffective.

Electrical sensory perception is based on sensing disturbances produced by the environment in an electric field generated by fish: these fish emit a 360° electric field around themselves which is disturbed by obstacles in their habitat, by other fish and by predators. The electro-receptor cells in their skin detect, measure and record these disturbances to create a three-dimensional image of their surroundings at any given moment.


Releases :

INSTITUT CARNOT – MINES / Avec sa technologie du « sens électrique », ELWAVE équipe les robots d’un 6e sens


Site web


Contact :

  • ELWAVE
    Espaces Entreprises IMT Atlantique
    2 rue Alfred Kastler, CS40617
    44300 NANTES Cedex 3
  • contact@elwave.fr
  • tel-icon+33 (0)2 51 85 87 71

QUEENSLAND UNIVERSITY

La crevette aux yeux de scanner …

Parmi les nombreux travaux de recherche menés à l’Université de Queensland en Australie, ceux du professeur Justin Marshall nous intéressent particulièrement. Ils concernent les facultés de cette « fameuse » crevette-mante ou « squille multicolore » (Odontodactylus scyllarus). Un animal à la force herculéenne, que l’on retrouve dans l’Océan Indien et dans la partie occidentale de l’Océan Pacifique.

Étudiée pour la confection de matériaux ultra-résistants, cette crevette-mante fait également l’objet de l’intérêt des chercheurs pour ses yeux étonnants. Ces derniers sont en effet composés d’ommatidies, elles-mêmes constituées de cellules photoréceptrices possédant de fins prolongements cellulaires, des microvillosités, qui peuvent filtrer la lumière polarisée. Cette lumière est une lumière qui vibre dans une seule direction. La filtrer permet de mieux détecter les contrastes (pensez aux filtres sur les appareils photos ou les lunettes de soleil), mais également… les cancers ! Ces derniers réfléchissent en effet la lumière polarisée différemment par rapport aux tissus sains.

Cette propriété a inspiré Justin Marshall et ses collègues de l’Université du Queensland en Australie pour la fabrication d’une caméra détectant les tumeurs, chose que notre système visuel est normalement incapable de faire. Ici, la caméra convertit des images invisibles pour nous en couleurs que nous pouvons percevoir.


Videos :

La planche Biomim’review :


Site web


Releases :

QUEENSLAND UNIVERSITY / 5 DEC 2014 / Nature’s elegant and efficient vision systems can detect cancer

LA MAISON DE LA VISION / 9 MAR 2015 / LES YEUX DE LA SQUILLE INSPIRENT LA RECHERCHE CONTRE LE CANCER !

GENT SIDE / 23 MAI 2019 / La crevette-mante, un crustacé à la perception visuelle complètement unique

HUFFPOST / 29 SEP 2014 / Dépistage du cancer d’un coup d’œil? Des scientifiques reproduisent les yeux de la crevette-mante, qui en est capable

Mais aussi :

SCIENCES ET AVENIR / 03 JUIL 2014 / Voir la vie en UV, comme la crevette-mante

FUTURA TECH / 31 OCT 2009 / La squille, un crustacé marin, aidera-t-elle à mieux lire les DVD ?


Contact :

Professor Justin Marshall

Professorial Research Fellow

Queensland Brain Institute

 justin.marshall@uq.edu.au
 +61 7 336 51397

PROPHESEE

REVEALS THE INVISIBLE

With the world’s most advanced neuromorphic vision systems, inspired by human vision and built on the foundation of neuromorphic engineering.

PROPHESEE is the revolutionary system that gives Metavision to machines, revealing what was previously invisible to them.

Prophesee is the inventor of the world’s most advanced neuromorphic vision systems.

Inspired by human vision, Prophesee’s technology  uses a patented sensor design and AI algorithms  that mimic the eye and brain to reveal what was invisible until now using standard frame-based technology.

Prophesee’s machine vision systems open new potential in areas such as autonomous vehicles, industrial automation, IoT, security and surveillance, and AR/VR. One early application was in medical devices that restore vision to the blind.

Prophesee’s technology is fundamentally different from the traditional image sensors – it introduces a paradigm shift in computer visionevent-based vision.


Intervention de Guillaume Butin à Biomim’expo 2019 :


La planche Biomim’review :


Other releases :

BFM Business 26 FEV 2020 : Sony entre au capital du français Prophesee pour aller plus loin dans la vision artificielle

Techniques de l’ingénieur 18 MAR 2020 : Prophesee met au point des capteurs de vision neuromorphique

Les Echos Entrepreneurs 28 OCT 2019 : Prophesee sécurise 25 millions d’euros et déploie ses capteurs dans l’industrie

La Tribune 28 OCT 2019 : La deeptech Prophesee lève 25 millions d’euros pour donner la vue aux aveugles et aux machines

Le Figaro 28 OCT 2019 : Prophesee lève 25 millions et affiche de nouvelles ambitions

VB 28 OCT 2019 : Prophesee raises $28 million for machine vision sensors that mimic the human eye


Site web


Contact :

Guillaume Butin | Marketing Communications Director

gbutin@prophesee.ai | +33 (0) 6 63 87 26 39

 

INSTITUT DES SCIENCES DU MOUVEMENT

L’Institut des Sciences du Mouvement Etienne-Jules Marey est une Unité Mixte de Recherche (UMR 7287), associant Aix-Marseille Université et le CNRS au travers de l’Institut des Sciences Biologiques (INSB), Institut de rattachement principal et de trois instituts secondaires : l’Institut des Sciences de l’Ingénierie et des Systèmes (INSIS); l’Institut des Sciences Informatiques et de leurs Interactions (INS2I) et l’Institut des Sciences Humaines et Sociales (INSHS).

L’institut est situé sur pluseiurs sites d’Aix-Marseille Université, le campus de Luminy, l’Hopital Sainte-Marguerite, l’Hopital de la Timone, et le site de l’IUT d’Aix-en-Provence

THEMATIQUES DE RECHERCHE

Les thèmes de recherche de l’Institut portent sur les déterminants mécaniques, physiologiques, neurologiques, psychologiques et sociologiques de la motricité des êtres vivants, l’Homme en particulier.

Le projet de l’Institut est de développer l’interdisciplinarité pour l’étude du Mouvement, afin de travailler aux frontières des champs disciplinaires.


Equipes de recherche :


Intervention de Stéphane Viollet et Antoine Wystrach à Biomim’expo 2019 pour présenter le robot AntBot :


La page-portrait dans le Biomim’BOOK 2019 :


Sources / contacts :

UMR 7287 CNRS & Aix-Marseille Université
Faculté des Sciences du Sport, CP 910
163, av. de Luminy F-13288 Marseille cedex 09 (FRANCE)
Téléphone : +33 (0)491 17 22 55
Télécopie : +33 (0)491 17 22 52
Courriel : ism-com@univ-amu.fr


 


Site web

CENTRE DE RECHERCHE SUR LA COGNITION ANIMALE

Le Centre de Recherches sur la Cognition Animale (CRCA) fait partie du Centre de Biologie Intégrative de Toulouse (CBI Toulouse), fédération de recherche qui regroupe cinq laboratoires toulousains. Il a deux tutelles qui sont le CNRS et l’université Toulouse III – Paul Sabatier.

Le CRCA a pour objectif principal l’étude pluridisciplinaire et comparée des processus cognitifs chez divers modèles animaux allant des invertébrés aux vertébrés.

  • Au niveau de l’individu, nous nous intéressons aux processus perceptifs, à l’attention sélective, et à l’apprentissage et la mémorisation d’indices ponctuels et de l’espace. La compréhension de ces processus nécessite la mise en oeuvre d’études pluridisciplinaires relevant d’approches diverses comme l’éthologie, la psychologie expérimentale, la neuroéthologie, la neurobiologie, la biologie moléculaire et la modélisation. Dans ce cadre, l’étude du cerveau animal et de sa plasticité est une priorité de notre unité.
  • Au niveau des sociétés ou des espèces vivant en groupe, nous nous intéressons aux règles comportementales permettant la coordination d’activités au sein des groupes, d’où peuvent émerger, par des processus d’auto-organisation, des comportements collectifs complexes. Nous étudions ainsi la cognition distribuée reposant sur les interactions et la transmission directe ou indirecte des informations entre individus. Dans ce cadre, des approches d’éthologie, de modélisation, de physique et robotique sont employées.

Equipes de recherche :

Comportement collectif (CAB) Responsable : Vincent Fourcassié

Plasticité dépendante de l’expérience chez l’insecte (EXPLAIN) Responsables : Martin Giurfa et Jean-Marc Devaud


Sources / contacts :

Centre de Recherches sur la Cognition Animale (UMR 5169) – Centre de Biologie Intégrative
CNRS – Université Paul Sabatier – Bât 4R3
710, cours Rosalind Franklin
118, route de Narbonne
31062 Toulouse cedex 09
France

Téléphone (secrétariat, Mme C. Renault) : +33 5 61 55 67 31


La page-portrait dans le Biomim’BOOK 2019 :


Site web

ANTBOT – géolocalisation sans GPS

Elle s’appelle Cataglyphis et elle est géniale. C’est une fourmi du désert, une navigatrice qui se déplace sans GPS, grâce à une boussole céleste car elle est capable de « lire » la lumière !

Des chercheurs ont décrypté son secret et s’en sont même bio-inspirés pour développer le robot « AntBot », une révolution pour les stratégies de navigation de demain.

Découvrez cette histoire fantastique inspirée du vivant avec Stéphane Viollet, Directeur de Recherche au CNRS, Institut des Sciences du Mouvement (ISM-UMR7287) Aix Marseille Université, et Antoine Wystrach, Chargé de Recherche au CNRS, Centre de recherche sur la cognition animale à Toulouse (CNRS Université Paul Sabatier Toulouse III), racontée à Biomim’expo 2019.


Autres videos :


Sources / contacts :

Chercheur CNRS l Stéphane Viollet // T +33 4 91 82 83 68 // +33 6 34 14 15 94 // stephane.viollet@univamu.fr
Presse CNRS l Priscilla Dacher // T +33 1 44 96 46 06 // priscilla.dacher@cnrs.fr


Other releases :

Le communiqué du CNRS : Le premier robot à pattes qui se déplace sans GPS

Science Robotics : AntBot: A six-legged walking robot able to home like desert ants in outdoor environments

Futura Sciences : Voici Antbot, un robot inspiré des fourmis et qui se déplace sans GPS

Techniques de l’ingénieur : AntBot : un robot qui s’oriente comme une fourmi – Applications à la navigation à vue sans GPS ni magnétomètre

Rfi : AntBot, robot fourmi sans GPS

Le Monde : AntBot, un robot autonome inspiré par des fourmis du désert

 

EDIXIA AUTOMATION

EDIXIA AUTOMATION est le spécialiste de la vision industrielle depuis plus de 35 ans. L’atout  de notre entreprise est d’avoir travaillé dans le numérique avant tout le monde ! Aujourd’hui, nous proposons une vaste gamme de produits pour l’inspection de surface par vision. Notre quotidien est rythmé par l’innovation !

For more information, visit www.edixia.fr


VIDEOS


CONTACTS

Gilles Wackenheim, Président Edixia Automation

 

 

GROUPE RENAULT

Constructeur automobile depuis 1898, nous sommes présents dans 134 pays et avons vendu près de 3,9 millions de véhicules en 2018. Pour répondre aux grands défis technologiques du futur et poursuivre notre stratégie de croissance rentable, nous nous appuyons sur notre développement à l’international et misons sur la complémentarité de nos cinq marques : Renault, Dacia, Renault Samsung Motors, Alpine et LADA.

Découvrir le Groupe Renault

Smart Cities :

Le Groupe Renault travaille avec les acteurs du secteur public pour apprendre et dialoguer avec les villes sur leur vision de l’avenir. Par sa position de leader en Europe du véhicule électrique et son engagement à continuer à investir dans les technologies et services innovants, le Groupe Renault apporte sa contribution au développement des villes intelligentes. en savoir plus.


Intervention de Jérôme Perrin à Biomim’expo 2019 :


Site Web


Contact :

Jérôme Perrin, Directeur scientifique


à propos du Biomim’City Lab :

Le Biomim’City Lab est un groupe de travail et de prospective animé par un collège d’experts visant à promouvoir et intensifier les approches collaboratives innovantes appliquant les principes et méthodologies du biomimétisme, au service de la réinvention de villes vertueuses, régénératives et résilientes, inspirées et pensées par et pour le vivant.

Une initiative collective dont les membres fondateurs sont : ICADE, CEEBIOS, ELAN, RENAULT, EIFFAGE, NOBATEK INEF4, BECHU ET ASSOCIES, IN SITU ARCHITECTURE, TANGRAM ARCHITECTES, NEWCORP CONSEIL.


La présentation


Le manifeste